Many-body effects in Auger electron emission from Graphene
نویسندگان
چکیده
منابع مشابه
Auger electron emission initiated by the creation of valence-band holes in graphene by positron annihilation
Auger processes involving the filling of holes in the valence band are thought to make important contributions to the low-energy photoelectron and secondary electron spectrum from many solids. However, measurements of the energy spectrum and the efficiency with which electrons are emitted in this process remain elusive due to a large unrelated background resulting from primary beam-induced seco...
متن کاملRadiative auger effect and extended X-ray emission fine structure (EXEFS).
Radiative Auger spectra are weak X-ray emission spectra near the characteristic X-ray lines. Radiative Auger process is an intrinsic energy-loss process in an atom when a characteristic X-ray photon is emitted, due to an atomic many-body effect. The energy loss spectra correspond to the unoccupied conduction band structure of materials. Therefore the radiative Auger effect is an alternative too...
متن کاملElectron-Hole Recombination Rates for Auger Scattering in Graphene
We calculate electron-hole recombination rates for Auger scattering in Graphene. The conduction and valence band dispersion relation in Graphene together with energy and momentum conservation requirements restrict the phase space for Auger processes so that electron-hole recombination times can be much longer than 1 ps for electron-hole densities smaller than 1012 cm−2.
متن کاملAb initio simulation of helium-ion microscopy images: the case of suspended graphene.
Helium ion microscopy (HIM), which was released in 2006 by Ward et al., provides nondestructive imaging of nanoscale objects with higher contrast than scanning electron microscopy. HIM measurement of suspended graphene under typical conditions is simulated by first-principles time-dependent density functional theory and the 30 keV He+ collision is found to induce the emission of electrons depen...
متن کاملThe effect of doping Graphene Quantum Dots with K, B, N, and Cl on its emitted spectrum
In this work, the effect of doping Graphene Quantum Dots (GQDs) on their emission spectra has been studied. First, graphene has been deposited on SiC substrate by using sublimation method. Second, doped-GQDs have been distributed on the surface of graphene via drop casting. The structure of the samples have been studied and characterized by X-ray diffraction (XRD), Scanning Electron Microscopy ...
متن کامل